

Gebrauchs- und Montageanleitung

Thermischer Massendurchflussmesser für Aussen- und Ex-An wendungen (Einstechsensor)

.SUO

.SUO

Sehr geehrter Kunde,

vielen Dank, dass Sie sich für eines unserer Produkte entschieden haben.

Lesen Sie die Gebrauchs- und Montageanleitung sorgfältig durch, bevor Sie das Gerät in Betrieb nehmen. Der Hersteller haftet nicht für Schäden, die durch nicht bestimmungsgemäßen Gebrauch, falsche Montage oder falsche Bedienung verursacht werden.

Sollte das Gerät auf eine andere Art und Weise, wie in der Anleitung beschrieben, benutzt werden, entfällt die Garantie und der Hersteller wird von jeglicher Haftung ausgeschlossen.

Das Gerät ist ausschließlich für den beschriebenen Zweck bestimmt und darf nur dafür verwendet werden.

SUTO iTEC GmbH bietet keine Garantie für andere Anwendungen.

Überarbeitung: 2024-2

Letzte Änderungen: August 2024

Inhaltsverzeichnis

1 Sicharhaitchinwaica	F
2 Degistriarta Markon	J
2 Anwandung	/
4 Features	0
F Technicche Daten	0
5 Technische Daten.	9
5.1 Messung	9
5.2 Signal / Schnittstelle & versorgung	10
5.5 Allgemeine Daten	10
5.4 Durchflussbereiche	12
6 Technische Zeichnung	14
7 Bestimmung des Einbauortes	15
7.1 EIN- UND AUSIAUTSTRECKEN	10
	18
8.1 Anforderungen an die Installation	19
8.2 Vorgenensweise	19
8.2.1 Ermittlung der Einstechtiefe	20
8.2.2 Installation	21
8.2.3 Demontage	22
8.2.4 Drehen der Anzeige	23
8.3 Elektronischer Anschluss	25
8.3.1 Anschlussdiagramm	25
8.3.2 Anschlussbelegung	26
9 Signalausgänge	27
9.1 Analog- und Impulsausgänge	27
9.1.1 Analoger Ausgang	27
9.1.2 Impuls-/Alarmausgang	28
9.2 Modbus-Schnittstelle	28
9.2.1 Informationen zum Kanalwert	31
9.2.2 Spezifische Einstellungen für Gasdurchflussmessgeräte	34
9.3 Modbus/TCP-Schnittstelle	36
9.3.1 Modbus/TCP über Ethernet/APL	36
9.3.2 Modbus/TCP über Ein-Paar-Ethernet	36
9.4 Verbindung zwischen S451 und Kundengeräten	37
10 Bedienung über das Display	40
10.1 Informationen auf dem Display	40
10.1.1 Hauptseite	40
10.1.2 In der Statusleiste angezeigte Symbole	41
10.1.3 Alarm- und Fehlercode	41
10.2 Betrieb	42
10.3 Menüübersicht	43
11 Konfiguration mit der S4C-FS App	44

.SUO

11.1 Konfigurierbare Parameter	44
11.2 Alarmeinstellungen	45
11.3 Verwenden Sie die Service-App S4C-FS	46
12 Kalibrierung	47
13 Wartung	47
14 Entsorgung	47

1 Sicherheitshinweise

Bitte überprüfen Sie ob diese Gebrauchsanleitung dem Geräte-Typ entspricht.

Bitte beachten Sie in dieser Anleitung alle angegeben Hinweise. Sie beinhaltet wesentliche Informationen, welche bevor und während der Installation, im Betrieb und bei Wartungsarbeiten et werden müssen. Daher ist die Bedienungsanleitung von den

beachtet werden müssen. Daher ist die Bedienungsanleitung von den Technikern wie auch von dem verantwortlichen Betreiber / Fachpersonal sorgfältig zu lesen.

Die Bedienungsanleitung muss jederzeit und in unmittelbarer Nähe des Einsatzortes verfügbar sein. Im Falle von Unklarheiten oder Fragen bezüglich der Bedienungsanleitung oder dem Gerät, kontaktieren Sie bitte den Hersteller.

WARNUNG!

Druckluft!

Jeglicher Kontakt mit schnell entweichender Druckluft oder berstenden Anlageteilen kann zu schweren Verletzungen oder zum Tod führen!

- Überschreiten Sie nicht den maximal erlaubten Druckbereich (siehe Sensoretikett).
- Benutzen Sie ausschließlich druckfestes Installationsmaterial.
- Verhindern Sie, dass Personen von entweichender Druckluft oder von berstenden Anlagenteile getroffen werden können.
- Während den Wartungsarbeiten darf kein Druck auf der Anlage herrschen.

WARNUNG!

Netzspannung!

Jeglicher Kontakt mit unter Spannung stehenden Teilen kann einen elektrischen Schlag mit schweren Verletzungen oder den Tod zur Folge haben.

- Beachten Sie alle geltenden Vorschriften für elektronische Installationen.
- Während den Wartungsarbeiten muss sich das Gerät im spannungsfreien Zustand befinden.

• Alle elektronischen Arbeiten dürfen nur von befugtem Fachpersonal durchgeführt werden.

WARNUNG!

Unzulässige Betriebsparameter!

Bei Über- oder Unterschreitung der Parameter besteht Gefahr für Mensch und Material und es können Funktions- und Betriebsstörungen auftreten.

- Überschreiten Sie nicht die zugelassenen Betriebsparameter.
- Das Gerät darf nur innerhalb der zulässigen Grenzwerte betrieben werden.
- Über- oder Unterschreiten Sie nicht die zugelassene Lager- und Betriebstemperatur bzw. den Druck.
- Das Gerät sollte regelmäßig gewartet und kalibriert werden (mindestens einmal im Jahr).

Allgemeine Sicherheitshinweise

- Es ist nicht erlaubt das Gerät in explosiver Umgebung zu betreiben.
- Bitte beachten Sie die nationalen Bestimmungen und Sicherheitsvorschriften bevor/während der Installation und im Betrieb.

Hinweis

• Umbauten oder Veränderungen am Gerät sind unzulässig.

VORSICHT!

Messwerte können fehlerhaft sein!

Das Gerät muss korrekt installiert und regelmäßig gewartet werden, sonst kann es zu fehlerhaften Messwerten und Fehlinterpretationen kommen.

- Beachten Sie immer die Flussrichtung bei der Installation des Sensors. Die Richtung ist am Gehäuse angegeben.
- Überschreiten Sie nicht die maximale Betriebstemperatur an der Sensorspitze.
- Vermeiden Sie Kondensation am Sensorelement da dies die Genauigkeit extrem beeinflusst.

Transport und Lagerung

- Stellen Sie sicher, dass die Transporttemperatur vom Sensor mit Display zwischen -30°C … 70°C.
- Es wird empfohlen den Sensor in der Original-Verpackung zu transportieren.
- Vermeiden Sie direkte UV- und Sonneneinstrahlung während der Lagerung.
- Während der Lagerung sollte die Luftfeuchtigkeit <90% sein; keine Kondensation.

2 Registrierte Marken

SUTO®	Eingetragenes Warenzeichen von SUTO iTEC
MODBUS®	Eingetragenes Warenzeichen von der Modbus Organization, Hopkinton, USA
Android™, Google Play	Eingetragenes Warenzeichen von Google LLC

.SUO

3 Anwendung

Der Thermischer Massedurchflussmesser S451 ist für raue und gefährliche Umgebungen konzipiert und wird hauptsächlich zur Messung von Druckluft und Prozessgasen eingesetzt.

Der S451 kann die folgenden Parameter messen:

- Volumendurchfluss oder Massendurchfluss
- Geschwindigkeit
- Verbrauch
- Druck
- Temperatur

Die Werkseinstellungen sind: Geschwindigkeit in m/s, Volumenstrom in Sm³/h und Verbrauch in Sm³ Druck in bar und Temperaure in °C. Andere Einheiten können über das lokale Display oder die Serviceanwendung S4C-FS programmiert werden.

4 Features

- Massendurchflussmessungen zur Ermittlung von Massendurchfluss, Standard / Normdurchfluss, Verbrauch, Druck und Temperatur
- Robustes Metallgehäuse für den Einsatz auch in Außenbereichen und in explosions-gefachrdeten Bereichen
- Einfacher Zugriff auf gespeicherte Messdaten über den integrierten Datenlogger mit der kostenlosen S4C-FS Smartphone-App
- Alle mit dem Medium in Berührung kommenden Teile sind aus Edelstahl oder vernickeltem Metall gefertigt
- Mechanische Konstruktion ohne bewegliche Teile für verstopfungsfreien Betrieb
- Drahtlose Schnittstelle zur mobilen App S4C-FS f
 ür Sensoreinstellungen vor Ort
- Display mit aktuellen Messwerten und Statusinformationen

5 Technische Daten

5.1 Messung

CE	UK CA		
Durchflu	ISS		
Genauigkeit *		±(1,5% v. Messwert + 0,3% v.Endwert) * Die angegebene Genauigkeit gilt nur innerhalb der minimalen und maximalen Durchflussmengen, die in Kapitel 5.4 angegeben sind.	
Wählbare	e Einheiten	Sm ³ /h, Sm ³ /min, Sl/min, Sl/s, Scfm, kg/h, kg/min, kg/s, Nm ³ /min, Nl/min, Nl/s, Ncfm	
Wiederho	lbarkeit	0,25 % v.Messwert	
Sensor		Thermischer Massendurchflussmesser	
Abtastrat	е	3 pro Sekunde	
Turndowr	n-Verhältnis	200:1	
Reaktionszeit (t ₉₀)		0.5 Sekunden	
Sekunde	en		
Wählbare Einheiten		Sm ³ , Sl, Scf, kg, Nm ³ , Nl, Ncf	
Druck			
Accuracy		0,5% FS	
Wählbare Einheite		bar, psi, kPa, MPa	
Messbereich		0 1,6 MPa(g) (option A1558) 0 5,0 MPa(g) (option A1559)	
Sensor		Piezzo-Widerstandssensor	
Tempera	atur		
Accuracy		0,5°C	
Wählbare Einheite		°C, °F	
Messbere	Messbereich -40 +140°C		
Sensor Pt		Pt1000	
Referenz	zbedingungen		
Wählbare Bedingungen		ISO1217, 20°C, 1000 mbar DIN1343, 0°C, 1013.25 mbar	

Frei einstellbar

Hinweis: Der Verbrauchswert (Summenzähler) wird alle 5 Minuten dauerhaft gespeichert. Wenn das Gerät zwischen diesen 5 Minuten ausgeschaltet wird, stellt es den letzten Verbrauchswert wieder her, der im letzten Zyklus gespeichert wurde.

5.2 Signal / Schnittstelle & Versorgung

Analogausgang	
Signal	2 x 4 20 mA (4-Leiter), isoliert
Skalierung	0 max Durchfluss, frei einstellbar
Belastung	Max. 400 Ohm
Aktualisierungsrate	Wert wird alle 1 Sek. aktualisiert
Impulsausgang	
Signal	Schaltausgang, Schließer, max. 30 VDC, 200 mA
Skalierung	1 Impuls pro Verbrauchseinheit (wählbar)
Alarm	Kanal und Schwelle frei einstellbar
Fieldbus	
Protokoll	Modbus/RTU Modbus/TCP over Ethernet/APL oder Modbus/TCP over single pair Ethernet
Versorgung	
Spannung, Strom, Verbrauch	16 30 VDC, 200 mA, 5 W

5.3 Allgemeine Daten

Konfiguration		
Kabellos	S4C-FS App für Android und iOS	
Andere	3 optische Tasten am Display	
Anzeige		
Integriert	Farbiges Grafikdisplay	
Material		
Prozessanschluss	Edelstahl 1.4404 (SUS 3 16L)	

Gehäuse	Al-Legierung
Sensor	Edelstahl 1.4404 (SUS 3 16L), 4J50 vernickelt, Glas
Metallteile	Edelstahl 1.4404 (SUS 3 16L)
Sonstiges	
Elektrischer Anschluss	Schraubklemmen
Protection class	IP67, IP65 (Ex version)
Zulassungen	CE, RoHS, FCC, Ex-Optionen
Prozessanschluss	G3/4" (ISO 228/1)
Weight	2,08 kg (200 mm version) 2,15 kg (300 mm version)
Betriebsbedingungen	
Measured medium	Air, N2, O2, CO2 und andere nicht korrosive Gase
Mediumsfeuchtigkeit	< 90%, keine Anforderungen
Betriebsdruck	0 1,6 MPa (option A1558) 0 5,0 MPa (option A1559)* * Für Drücke über 1,5 MPa verwenden Sie die Montagevorrichtung A530 1119 oder A530 1120 für die Montage des S451.
Umgebungstemperatur	-40 +65°C
Lagertemperatur	-40 +70°C
Transporttemperatur	-40 +70°C
Mediumtemperatur	-30 +90°C (Ex Version) -30 +140°C
Rohrgrößen	≥ DN25 (1″)

5.4 Durchflussbereiche

Die Durchflussbereiche werden unter den folgenden Bedingungen angegeben:

- Standard-Durchfluss in Luft
- Referenzdruck: 1000 hPa
- Referenz-Temperatur: +20°C

Durchmesser		Low	Standard	Max	
		(mm)	(Sm³/h)	(Sm³/h)	(Sm³/h)
DN25	1″	27,3	0,2 48	0,8 191	1,5 382
DN32	1¼″	36,0	0,3 86	1,4 345	2,8 689
DN40	11⁄2″	41,9	0,5 119	1,9 475	3,8 949
DN50	2″	53,1	0,8 194	3,1 777	6,2 1.554
DN65	21⁄2″	68,9	1,3 332	5,3 1.329	10,6 2.658
DN80	3″	80,9	1,8 461	7,4 1.843	14,7 3.686
DN100	4″	100,0	2,8 707	11,3 2.826	23 5.653
DN125	5″	125,0	4,4 1.107	17,7 4.427	35 8.853
DN150	6″	150,0	6,4 1.596	26 6.382	51 12.764
DN200	8″	200,0	11,4 2.843	45 11.373	91 22.764
DN250	10″	250,0	18 4.448	71 17.791	142 35.583
DN300	12″	300,0	26 6.413	103 25.650	205 51.300

Hinweis:

Zur Berechnung von Durchflussbereichen auf der Grundlage von Rohrleitungen und Referenzbedingungen vor Ort bietet SUTO das kostenlose Tool "Durchflussbereich-Rechner" an. Das Tool kann online auf http://www.suto-itec.com genutzt werden, indem Sie auf **Support** > **Durchflussbereich-Rechner** klicken.

AUSWAHL DER SENSOREN		AUSGABEN DES RECI	HNERS	
Sensor-Typ		Max.	204	6 2 /h
S451	~	Durchfluss	804	5m3/n
Messstrecke		Min.		62 (h
		Durchfluss	3.2	5m3/n
Messbereich		Max.		_
Standard	~	Geschwindigkeit	120.0	Sm/s
Innendurchmesser des Rohr	es			
54.0				

.SUO

6 Technische Zeichnung

7 Bestimmung des Einbauortes

Um die in den technischen Daten angegebene Genauigkeit zu erreichen, muss der Sensor in der Mitte eines geraden Rohrabschnittes mit ungestörtem Strömungsverhalten eingeführt werden. Ungestörtes Strömungsverhalten wird erzielt, wenn die Abschnitte vor dem Sensor (Einlass) und hinter dem Sensor (Auslass) ausreichend lang, absolut gerade und frei von Hindernissen, wie Kanten, Nahtverbindungen, Kurven etc., sind.

Bitten achten Sie darauf, dass genug Platz für eine angemessene Installation vorhanden ist.

VORSICHT!

Fehlerhafte Messungen sind möglich, wenn der Sensor nicht korrekt installiert ist.

- Achten Sie auf den Bereich des Einlasses und Auslasses.
 Hindernisse können Turbulenzen gegen die Strömungsrichtung wie auch mit der Strömungsrichtung hervorrufen.
- Es wird davon abgeraten, den Sensor unter permanent feuchten Bedingungen zu installieren, wie es für gewöhnlich direkt nach einem Kompressor Auslass der Fall ist.

.SU0

7.1 Ein- und Auslaufstrecken

Die folgenden Abbildungen zeigen die notwendigen Ein- und Auslaufstrecken in Abhängigkeit von vorhandenen Hindernissen. Ist es nicht möglich, die angegebenen Ausgleichsstrecken einzuhalten, muss mit Abweichungen in den Messergebnissen gerechnet werden.

Hinweise:

- Bei jeder Kombination der unten genannten Situationen muss die längste gerade Einlaufstrecke beibehalten werden.
- Die unten dargestellten Längen der Ein- und Auslaufstrecken sind Mindestanforderungen. Längere Einlaufstrecken sind zu bevorzugen. D.h. wenn die Möglichkeit besteht, beim Einbau eine längere gerade Einlaufstrecke zu erreichen als mindestens vorgegeben, so ist dies zu bevorzugen.

 $\langle \langle \rangle$

• 3-dimensionale Biegung

Absperrventil

• T-Stück

 Filter oder ähnliches (unbekannte Objekte)

.SUO

8 Installation

Stellen Sie sicher, dass alle hier aufgelisteten Komponenten mit geliefert wurden.

Anz.	Beschreibung	Teile Nr.
1	S451 Thermischer Massedurchflussmesser (Einstechsensor), inkl. Display, Datenlogger, Durchflussmedium 1: Luft, 200 mm Schaft	S695 4510 oder S695 4511
1	Dichtungsring	
1	Ausrichtungsschlüssel	
1	Bedienungsanleitung	
1	Kalibrierzertifikat	

Für Drücke über 1,5 MPa müssen Sie das Installationsgerät A530 1119 oder A530 1120 verwenden.

Teile Nr.	Beschreibung
A530 1119	Hochdruck-Installationsgerät S451, 200 mm (zu verwenden, wenn der Druck über 1,5 MPa liegt)
A530 1120	Hochdruck-Installationsgerät S451, 300 mm (zu verwenden, wenn Druck > 1,5 MPa)

Für die Ausgabe stehen drei Arten von Ausgängen zur Verfügung.

Ausgabe	
A1560	2 x 4 20 mA, Pulse/Alarm, Modbus/RTU
A1561	2 x 4 20 mA, Impuls/Alarm, Modbus/TCP über Ethernet/APL, Stromversorgung mit getrennter DC- Versorgung (für Ex-Anwendung A1556)
A1562	2 x 4 20 mA, Impuls/Alarm, Modbus/TCP über Single Pair Ethernet (SPE), Power over Data Line (PoDL) Klasse 12 (nur für Nicht-Ex-Anwendungen)

8.1 Anforderungen an die Installation

Für die Installation wird ein Kugelhahn oder ein Stutzen benötigt.

- Das Innengewinde muss G 3/4" sein.
- Der Lochdurchmesser muss ≥ 19 mm sein, damit der Sensorschaft eingeführt werden kann.

 Der Durchflussmesser kann in beliebiger Ausrichtung eingebaut werden (horizontal, vertikal, seitlich und auf dem Kopf stehend). Beachten Sie die erforderlichen geraden Ein- und Auslaufstrecken, die in Abschnitt 7.1 beschrieben sind.

8.2 Vorgehensweise

Die folgenden Schritte erklären das Vorgehen für eine angemessene Installation.

ACHTUNG!

Stecken Sie den Durchflussmesser nicht mit großer Kraft ein. Es kann passieren, dass die Sondenspitze auf die Rohrinnenwand aufschlägt und der Sensor beschädigt wird!

8.2.1 Ermittlung der Einstechtiefe

Die Sensorspitze muss in der Mitte des Rohres platziert werden. Benutzen Sie hierfür die Skalierung auf dem Schaft. Berechnen Sie die richtige Einstechtiefe wie unten beschrieben.

* Die Länge der Sicherungsmutter und des Anschlusskopfes wurde von der Skala auf der Welle abgezogen.

Bei Rohren größer als 200 mm kann der Sensor mit einer Einstechtiefe von 100 mm eingebaut werden.

In diesem Fall ist die Eintauchtiefe = y +100 mm, wobei y die Höhe des Kugelhahns ist.

ACHTUNG: Um die 100-mm-Installationsmethode zu aktivieren, denken Sie daran, die Einstellung für die Installationsmethode über die S4C-FS-Service-App oder das optionale Gerätedisplay entsprechend zu ändern.

8.2.2 Installation

Bitte beachten Sie die Pfeile auf dem Gehäuse so wie auf dem Schaft. Der Sensor muss so ausgerichtet werden, dass die Pfeilrichtung mit der Strömungsrichtung im Rohr übereinstimmt.

1. Drehen Sie den Kugelhahn ab.

2. Das Anschlussgewinde muss die Sensorspitze komplett bedecken (siehe Foto auf der linken Seite).

3. Legen Sie den O-Ring auf das Gewinde des Kugelhahns bevor Sie den Sensor fest schrauben.

4. Schrauben Sie die Anschlussschraube fest auf den Kugelhahn und richten Sie den Sensor nach der Strömungsrichtung aus.

5. Richten Sie den Durchflusssensor auf die Durchflussrichtung aus, indem Sie die auf dem Schaft angegebene Durchflussrichtung beachten.

6. Öffne Sie den Kugelhahn und ziehen Sie die Klemmhülse von Hand fest.

7. Schiebe Sie den Sensor vorsichtig mit Hilfe der Skalierung bis zur ermittelten Einstechtiefe.

8. Schrauben Sie die Spannhülse am Anschlussgewinde fest, so dass der Sensor nicht mehr durch den Druck, der im Rohr herrscht, bewegt wird aber trotzdem noch manuell bewegt werden kann.

9. Kontrollieren Sie ob der Pfeil auf dem Sensor in die aktuelle Strömungsrichtung zeigt. Benutzen Sie wenn

nötig den Ausrichtungsschlüssel (die Winkelabweichung sollte nicht größer als \pm 2° sein, siehe hierfür die Abbildung auf der nächsten Seite).

10. Ziehe Sie nun die Spannhülse mit 20 ... 30 Nm fest.

11. Kontrollieren Sie nochmals die Einstechtiefe, da der Sensor durch die Druckluft aus der ursprünglichen Position gedrückt werden kann.

Maximale Winkelabweichung:

8.2.3 Demontage

- 1. Halten Sie den Sensor fest.
- 2. Lösen Sie die Spannhülse an dem Anschlussgewinde.
- 3. Ziehen Sie den Sensorschaft langsam heraus, bis Sie auf der Skalierung den Wert "10" ablesen können.
- 4. Schließen Sie den Kugelhahn.
- 5. Lösen Sie das Anschlussgewinde und entfernen Sie den Sensor.

8.2.4 Drehen der Anzeige

Der S451 wird mit einem Display geliefert. Das Display ist mit der Durchflussrichtung von rechts nach links ausgerichtet. Wenn der Durchflussmesser mit der Anzeige zur Wand hin installiert wird, kann die Anzeige leicht um bis zu 180° gedreht werden, um den tatsächlichen Anforderungen zu entsprechen.

Hinweise: Es wird empfohlen, das Display nur dann um 180° zu drehen, wenn dies erforderlich ist, um einen stabilen und zuverlässigen Betrieb des S451 zu gewährleisten.

ACHTUNG!

Der Vorgang des Drehens des Displays muss streng nach den folgenden Schritten durchgeführt werden. Jeder andere Vorgang kann zu einer Beschädigung des Geräts führen.

1. Verwenden Sie einen Sechskantschlüssel, um die vier Schrauben und Federscheiben unter der Verbindungswelle zu lösen und zu entfernen.

 Fassen Sie das Metallgehäuse der Anzeigeeinheit an und ziehen Sie es langsam aus dem Schaft heraus.

Hinweis: Um eine Beschädigung des internen Kabelbaums zu vermeiden, muss die Auszugslänge weniger als 10 mm betragen.

 Beachten Sie die Flussrichtungsmarkierung auf dem Schaft und drehen Sie das Anzeigegehäuse um 180° in Richtung des Gasflusses.

Hinweis: Um eine Beschädigung des internen Kabelbaums zu vermeiden, drehen Sie ihn nicht in die entgegengesetzte Richtung oder um mehr als 180°.

- 4. Montieren Sie das Metallgehäuse wieder auf dem Schaft und achten Sie darauf, dass die Dichtung in der Dichtungsnut der Verbindungswelle sitzt.
- Verwenden Sie einen Sechskantschlüssel, um die 4 Schrauben und Federringe wieder zu befestigen.

Hinweis: Die Federringe müssen unbedingt angebracht werden, damit sich das Produkt nicht löst.

Flussrichtung

8.3 Elektronischer Anschluss

Beim anschließen der Kabel sollten die folgenden Punkte beachtet werde:

- Lassen Sie die abisolierte und gedrehte Länge des Kabelschirms so kurz wie möglich.
- Überprüfen und erden Sie das Leitungssignal.
- Nicht benutzte Kabeleinführungen müssen mit Verschlüssen verschlossen werden.
- Das Kabel sollte einen Außendurchmesser zwischen 6 und 8 mm haben.
- Der Leitungsquerschnitt sollte zwischen 0.25 ... 0.75 mm² sein.
- Die Gewindegröße für die Kabel- und Leitungseinführung ist M20/1.5.

8.3.1 Anschlussdiagramm

Entfernen Sie die hintere Abdeckung des S451. Die Anschlussbelegung ist wie folgt dargestellt.

8.3.2 Anschlussbelegung

Der S451 bietet 2 Anschlussmöglichkeiten. Die Pinbelegung dieser Optionen ist in der folgenden Tabelle angegeben.

Din	Ausgabe	-Optionen	Bomorkungon	
PIN	Modbus/RTU	Modbus/TCP	Bemerkungen	
1	Earth	Earth		
2	GND_SDI	GND_SDI		
3	+V _B	+V _B	24 VDC-Stromyersorgung	
4	-V _B	-V _B		
5	SDI	SDI	Digitale Schnittstelle SUTO- Sensor	
6	D+	SPE_P		
7	D-	SPE_N	 Modbus/RIU- oder Ethernet/API-Anschluss 	
8	GND	SPE_E		
9	+I11	$+I_1$	4 - 20 = 0	
10	-I ₁	-I ₁	- 4 20 IIIA Ausgalig 1	
11	$+I_2$	$+I_2$		
12	-I ₂	-I ₂		
13	Earth	Earth		
14	+Pulse/Alarm	+Pulse/Alarm	Impuls (Alarmausgang	
15	-Pulse/Alarm	-Pulse/Alarm	impuis-/Alaimausyalig	
16	DIR	DIR	Eingabe der	
17	DIR	DIR	Durchflussrichtung	

9 Signalausgänge

9.1 Analog- und Impulsausgänge

Der S451 verfügt über 2 Analogausgänge und einen Impuls-/ Alarmausgang. Alle Signale sind elektrisch isoliert.

9.1.1 Analoger Ausgang

Der Analogausgang ist ein aktiver Ausgang.

Signal und Last: 4 bis 20 mA, RL < 400 Ω Ungewissheit: < 0,3 % der Lesung</td>Resolution: 0,005 mA

Unidirektionaler Fluss

Die Standardskalierung reicht von 0 bis zum maximalen Durchfluss.

Analoger Ausgang	Standard-Skalierung des Ausgangs		
4 mA	0		
20 mA	Maximaler Durchfluss		

Darüber hinaus unterstützt der Ausgang einen variablen Durchfluss. Das heißt, der Ausgang kann so skaliert werden, dass er dem gewünschten Messbereich entspricht. Insbesondere kann der Benutzer die 4 mA und 20 mA separat auf jeden Durchflusswert einstellen.

Bidirektionaler Fluss

Wenn der S451 mit der bidirektionalen Kalibrierung bestellt wird, ist die Korrespondenz zwischen dem Analogausgang und der Standardskalierung wie folgt:

Analoger Ausgang	Standard-Skalierung des Ausgangs		
4 mA	Maximaler Durchfluss rückwärts		
20 mA	Maximaler Durchfluss vorwärts		

Darüber hinaus unterstützt der Ausgang einen variablen Durchfluss. Das heißt, der Ausgang kann so skaliert werden, dass er dem gewünschten Messbereich entspricht.

9.1.2 Impuls-/Alarmausgang

Der Impuls-/Alarmausgang ist ein Normal Open (NO) isolierter Schalter. Bitte beachten Sie die richtige Polarität.

Max. Nennbetrieb: 30 VDC, 200 mA

Pulsweite: 10 ... 100 msek. (abhängig vom Durchfluss)

Impulsausgang

Die maximale Anzahl der Impulse pro Sekunde ist auf 49 begrenzt.

Falls die Durchflussmenge zu hoch ist, kann der S451 die Impulse mit den Standardeinstellungen (ein Impuls pro Verbrauchseinheit) nicht ausgeben. In diesem Fall können Sie den Impuls mit der Service-App S4C-FS auf 1 Impuls pro 10 Verbrauchseinheiten oder 1 Impuls pro 100 Verbrauchseinheiten einstellen.

Beispiel: Bei der Einstellung von 1 Impuls pro 10 m3 sendet der S451 alle 10 m³ einen Impuls.

Alarmausgang

Sie können Alarme für die folgenden Kanäle einstellen:

- Durchfluss(F)
 Tatsächliche Geschwindigkeit (F)
- Durchfluss(R)
 Tatsächliche Geschwindigkeit(R)
- Temperatur
 Druck

Für detaillierte Einstellungen siehe Abschnitt 11.2 Alarmeinstellungen.

9.2 Modbus-Schnittstelle

Die Modbus-Kommunikation erfordert die Aktivierung von Abschlusswiderständen am letzten Gerät im Bussystem. Wenn der S451 das letzte Gerät im Bussystem ist, sollten die DIP-Schalter auf der Anschlussplatine auf die Position "ON" gestellt werden.

Endwiderstand Netzwerkschalter

Gerätetyp	Slave
Adressbereich	1 251 Bus Adresse kann mit Hilfe der Software gesetzt werden.

Physikalische Schnittstelle	RS485 nach EIA/TIA-485 Standard
Baudrates	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud
Übertragungsart	ASCII, RTU
Reaktionszeit	Direkter Datenzugang = 0 255 ms (kann konfiguriert werden)

Die Standardeinstellungen der Modbus-Schnittstelle sind wie folgt:

RTU
19200
Letzte zwei Ziffern der Seriennummer
8, N, 1
1 Sekunde
0 ms
7 char

Antwortnachricht, die das Gerät an den Master zurückschickt:

• Funktionscode: 03

Die Informationen zur Byte-Reihenfolge sind in der folgenden Tabelle aufgeführt:

Byte	Sequence					
Order	1st	2nd	3rd	4th	Туре	
1-0-3-2	Byte 1 (MMMMMMM*)	Byte 0 (MMMMMMM *)	Byte 3 (SEEEEEEE)	Byte 2 (EMMMMMMM *)	FLOAT	
1-0-3-2	Byte 1	Byte 0 LSB	Byte 3 MSB	Byte 2	UINT32 INT32	
1-0	Byte 1 MSB	Byte 0 LSB			UINT16 INT16	
1-0	Byte 1 XXX *	Byte 0 DATA			UINT8 INT8	

* S: Vorzeichen, E: Exponent, M: Mantisse, XXX: kein Wert

Erklärungen zur MSB und LSB

MSB MSB steht für Most Significant Byte first (höchstwertiges Byte zuerst) und folgt der Big-Endian-Byte-Order.

Zum Beispiel, wenn das Hauptsystem der Reihenfolge MSB first (Big-Endian) folgt:

Wenn die 4-Byte-Gleitkommazahl vom Slave (Sensor) in der Reihenfolge Byte1-Byte0-Byte3-Byte2 empfangen wird, muss der Master die Byte-Reihenfolge in Byte3-Byte2-Byte1-Byte0 ändern, damit der Wert korrekt angezeigt wird.

LSB steht für Least Significant Byte first und folgt der Little-Endian-Byte-Order.

Wenn z. B. das Hauptsystem der LSB-Reihenfolge (Little Endian) folgt: Wenn die 4-Byte-Gleitkommazahl vom Slave (Sensor) in der Reihenfolge Byte1-Byte0-Byte3-Byte2 empfangen wird, muss der Master die Byte-Reihenfolge in Byte0-Byte1-Byte2-Byte3 ändern, damit der Wert korrekt angezeigt wird.

Bemerkungen: Modbus-Kommunikationseinstellungen sowie andere Einstellungen können über die mobile App **S4C-FS** geändert werden.

Register Adresse	Daten typ	Daten Länge	Kanalbeschreibung	R/W			
System-Informationen							
2000	INT16U	2-Byte	Gruppen-ID: 1 (Belegt die oberen 4 Bits in den 2 Byte langen Daten, der Rest ist für die Zukunft reserviert)	R			
2001	INT16U	2-Byte	Geräte-ID S451: 0x1013, S453 0x1014	R			
2002	INT32U	4-Byte	Seriennummer	R			
2004	INT16U	2-Byte	Hohes Byte der FW-Version, Niederwertiges Byte der HW-Version	R			
2005	DOUBLE	8-Byte	Datum der Kalibrierung Format: BCD-Code, erstes Byte ist das Datum, das zweite Byte ist der Monat, das dritte Byte sind die ersten beiden Ziffern des Jahres, das vierte Byte sind die letzten beiden Ziffern des Jahres. Zum Beispiel, 09.01.2024. Die Daten sind wie folgt angeordnet: 0x09, 0x01, 0x20, 0x24	R			
2007	INT16U	2-Byte	Gültige Tage ab Kalibrierungsdatum	R			
2008	INT16U	2-Byte	Anzahl Messkanaele	R			
2009	string	16-Byte	Name des Geräts: "S451" or "S453"	R			
	Einstellungen						

Modbus-Holding-Register

2100	Einstellungen (max 50 holding register)					
	Informationen zum Kanalwert					
2200	INT16U 2-Byte Einheit+Auflösung+Typ von Kanal 1					
2201	INT16U	2-Byte	Einheit+Auflösung+Typ von Kanal 2	R		
2207	INT16U	2-Byte	Einheit+Auflösung+Typ von Kanal 8			
			Maximal 50 Kanäle, abhängig von den Sensoren			
	Status und Kanalwert					
2300	INT16U	2-Byte	Status	R		
2301	FLOAT / INT32U	2-Byte	Kanal 1 Wert	R		
2315	FLOAT / INT32U	2-Byte	Kanal 8 Wert	R		

9.2.1 Informationen zum Kanalwert

Einheit+Auflösung+Typ

• Das erste Byte steht für die Einheit. Die Einheit und ihr Code sind wie folgt.

Parameter	Einheit	Code		Parameter	Einheit	Code
Temperatur	Temperatur °C 1 Verbra		Verbrauch	Sm ³	24	
	°F	2			SI	25
Geschwindigke	m/s	10			Scf	26
it	ft/min	11			Nm ³	27
Volumetrischer	Sm³/h	14			NI	28
Durchfluss	Sm³/min	15			Ncf	29
	Sl/min	16		Druck	kPa	35
	Sl/s	17			MPa	36
	Scfm	18			bar	38
	Nm³/h	19			psi	39
	Nm³/min	20		Masse des Verbrauchs	kg	47
	NI/min	21		Massenstrom	kg/h	52
	NI/s	22			kg/min	53

Ncfm	23

• Zweites Byte:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Datentyp:	Auflösung:						
0 float,1 4-Byte-Ganzzahl ohne Vorzeichen2 doppelt				0 0 1 0.0 2 0.0 3 0.0 4 0.0))0)00		

Status

Er ist unter der Holding-Registeradresse 2300 definiert. Das höchste Bit (Bit15) wird verwendet, um anzuzeigen, ob die Sensoreinstellungen vom Benutzer geändert wurde. Wenn dieses Register vom Master gelesen wird, wird das Bit15 auf Null zurückgesetzt. Die anderen Bits werden verwendet, um anzuzeigen, ob der Messkanal in Ordnung ist oder nicht.

Bit	Beschreibung
Bit15	0: Die Sensoreinstellung wurde seit der letzten Ablesung vom Master nicht geändert.1: Die Sensoreinstellung wurde seit der letzten Ablesung vom Master geändert.
Bit0	0: Messkanal 1 ist in Ordnung 1: Messkanal 1 ist nicht in Ordnung
Bit1	0: Messkanal 2 ist in Ordnung 1: Messkanal 2 ist nicht in Ordnung
•••	
Bit7	0: Messkanal 8 ist in Ordnung 1: Messkanal 8 ist nicht in Ordnung

Kanalwert

Die Kanalwerte sind von Kanal 1 bis Kanal 50 (max) angeordnet, die Länge und der Datentyp sind im Abschnitt Einheit+Auflösung+Typ definiert. Es werden maximal 50 Kanäle unterstützt.

Register Adresse	Datentyp	Kanalnu mmer	Beschreibung	R/W
2301	FLOAT	Kanal 1	Durchfluss	R

2303	FLOAT	Kanal 2	Tatsächliche Geschwindigkeit	R
2305	INT32U	Kanal 3	Verbrauch	R
2307	FLOAT	Kanal 4	Durchfluss (R)	R
2309	FLOAT	Kanal 5	Tatsächliche Geschwindigkeit (R)	R
2311	INT32U	Kanal 6	Verbrauch (R)	R
2313	FLOAT	Kanal 7	Druck	R
2315	FLOAT	Kanal 8	Temperatur	R

Kanal, Einheit, Auflösung und -typ

Register Adresse	Kanäle	Einheit	Auflösung	Тур	
		Sm³/h, Scfm, Sl/min, kg/h, Nm³/h, Ncfm, Nl/min	0.1		
2200	Durchfluss	Sm³/min, Sl/s, kg/min, Nm³/min, Nl/s	0.01	FIOAL	
		Kg/s	0.001		
2201	Geschwindigkeit	ft/min	0	Float	
2201		m/s	0.1		
2202	Verbrauch	Sm³, SI, kg, Scf, Nm³, NI, Ncf	0	INT32U	
2203		Sm³/h, Scfm, Sl/min, kg/h, Nm³/h, Ncfm, Nl/min	0.1	Float	
	Durchfluss (R)	Sm³/min, Sl/s, kg/min, Nm³/min, Nl/s	0.01		
		Kg/s	0.001		
2204	Geschwindigkeit (R)	ft/min	0	Float	
2204		m/s	0.1		
2205	Verbrauch (R)	Sm³, SI, kg, Scf, Nm³, NI, Ncf	0	INT32U	
2206	Druck	psi	0.1	Float	
		bar, MPa	0.01		
2207	Temperatur	°C, °F	0.1	Float	

9.2.2 Spezifische Einstellungen für Gasdurchflussmessgeräte

Register Adresse	Daten typ	Beschreibung	R/W
2100	Float	Innendurchmesser in Millimeter (nur bei Inline-Typ ablesen)	R/W
2102	INT16U	Gasart	R/W
2103	INT16U	Kalibriergas 1, immer Luft	R
2104	INT16U	Kalibriergas 2, alternatives Gas	R
2105	Float	Referenztemperatur	R/W
2107	Float	Referenzdruck	R/W
2109	Float	Endbereich in m/s oder ft/min (nur Lesen)	R
2111	Float	Benutzer-Steilheit (Grenzbereich von 0,5 bis 1,5)	R
2113	Float	Abschneidegeschwindigkeit in m/s oder ft/min	R
2115	INT16U	Filtergrad	R/W
2116	INT16U	Durchflusseinheit	R/W
2117	INT16U	Verbrauchseinheit	R/W
2118	INT16U	Druck-Einheit	R/W
2119	INT16U	Temperatur-Einheit	R/W
2120	INT16U	Routing von Analogkanal 2 (Druck oder Temperatur) 0 Druck, 1 Temperatur Analogkanal 1 ist immer für Durchfluss	R/W
2121	Float	4-20 mA Skalierung von Kanal 1 kleinerer Wert	R/W
2123	Float	4-20 mA Skalierung von Kanal 1 höherer Wert	R/W
2125	Float	4-20 mA Skalierung von Kanal 2 kleinerer Wert	R/W
2127	Float	4-20 mA Skalierung von Kanal 2 Höherer Wert	R/W

Code der Kalibrier-/Betriebsgasart

Gasart	Code
Luft	0
N ₂	1
Ar	2
CO ₂	3
He	4

-	
Gasart	Code
Propan	7
Butan	8
O ₂	9
N ₂ O	10
Naturgas	11

12

H ₂	5	Gemischtes Gas	
CH ₄	6		

Hinweise:

1. Anpassung der Skalierung des Analogausgangs

Wenn sich Durchflusseinheiten oder Referenzbedingungen ändern, wird die Skalierung des Analogausgangs automatisch vom Durchflussmesser geändert. Die entsprechende Einheit kann ebenfalls geändert werden; siehe unten.

2. Beziehung zwischen den Einheiten

Bei einer Änderung der Durchflusseinheit wird automatisch auch die entsprechende Verbrauchs- und Geschwindigkeitseinheit geändert. Dasselbe gilt, wenn Geschwindigkeits- oder Verbrauchseinheiten geändert werden.

Durchflusseinheit	Verbrauchseinheit	Geschwindigkeitseinheit
Sm³/min, Sm³/h; Nm³/min, Nm³/h	Sm ³ Nm ³	m/s
Scfm Ncfm	Scf Ncf	ft/min
kg/h, kg/min, kg/s	kg	m/s
Sl/min, Sl/s; Nl/min, Nl/s	SI NI	m/s

3. Änderung der Druck-/Temperatureinheiten und analoge Skalierung

Wenn die Druck- oder Temperatureinheiten geändert werden, wird auch die entsprechende Skalierung automatisch geändert.

4. Änderung der Durchflusseinheiten und Referenzbedingungen

Wenn Durchflusseinheiten geändert werden, werden die Referenzbedingungen nicht automatisch geändert, sondern müssen manuell geändert werden.

5. Fehlerbehandlung von Befehlen

Wenn eine ungültige Einstellung vorgenommen wird, antwortet der Durchflussmesser mit dem Funktionscode, wobei das MSB auf 1 gesetzt wird. Im Datenfeld steht ein Fehlercode: 01 illegaler Funktionscode, 02 illegale Datenadresse, 03 illegaler Datenwert.

9.3 Modbus/TCP-Schnittstelle

Der S451 unterstützt zwei Modbus/TCP-Kommunikationsmodi:

- Modbus/TCP über Ethernet/APL
- Modbus/TCP über Single Pair Ethernet.

Sie werden für die explosionsgeschützte Version und die nichtexplosionsgeschützte Version des S451 getrennt angewendet.

Modbus/TCP verwendet die gleichen Holding-Register wie in Abschnitt 9.2 beschrieben.

9.3.1 Modbus/TCP über Ethernet/APL

Der Ausgang entspricht dem 10Base-T1L Physical Layer Standard für 10 Mb/s Ethernet-Kommunikation über eine einzelne symmetrische Twisted-Pair-Kupferverkabelung ohne Stromversorgung. Der S451 bietet eine externe Gleichstromversorgung für die Schnittstelle.

Der 10Base-T1L arbeitet im 1,0-Vpp-Modus und die Kabellänge kann bis zu 200 m betragen. Er ist für explosionsgeschützte Umgebungen (Gefahrenbereiche) geeignet.

ACHTUNG!

Dies ist nur ein Kommunikationsanschluss und darf nicht an den Stromquellenanschluss eines Ethernet APL Field Switches angeschlossen werden.

9.3.2 Modbus/TCP über Ein-Paar-Ethernet

Der Ausgang entspricht dem 10Base-T1L Physical Layer Standard für 10 Mb/s Ethernet-Kommunikation über eine einzelne symmetrische Twisted-Pair-Kupferverkabelung mit Stromversorgung.

Der 10Base-T1L arbeitet im 2,4-Vpp-Modus und die Kabellänge kann bis zu 1000 m betragen. Die Stromversorgung des S451 unterstützt 24V DC Power Class 12 (IEEE 802.3 cg) mit dem integrierten PoDL (Power Over Data Line) Controller.

ACHTUNG!

Der Power over Single Pair Ethernet ist nicht für explosionsgefährdete Bereiche geeignet.

9.4 Verbindung zwischen S451 und Kundengeräten

Dieser Abschnitt enthält Abbildungen, die zeigen, wie die vom S451 unterstützten Ausgänge mit den Kundengeräten verbunden werden.

In den folgenden Abbildungen bezeichnet das SUTO-Instrument das S451.

+TRD

-TRD

SHD

+TRD

-TRD

SHD

10Base-T1L

Switch

.SUO

10 Bedienung über das Display

Mit dem Display können Sie Folgendes tun:

- Alle verfügbaren Messkanäle anzeigen.
- Fehler-/Statusinformationen anzeigen.
- Ändern der Sensoreinstellungen.

10.1 Informationen auf dem Display

10.1.1 Hauptseite

Nach dem Einschalten startet das Display einen Initialisierungsvorgang. Nach Abschluss dieses Vorgangs geht es in den Standardmodus über und zeigt die Online-Werte wie unten dargestellt an.

Für die Bedienung des S451 stehen drei optische Tasten zur Verfügung.

10.1.2 In der Statusleiste angezeigte Symbole

Zeigt den Status oder Warnungen für den Sensor im Betrieb an.

Symbol	Erläuterung
(((•)))	Es wurde eine drahtlose Verbindung zwischen dem S451 und dem Mobiltelefon wurde hergestellt.
Ø	Der integrierte Logger ist aktiviert.
٢	Ein Alarm wird ausgelöst.

10.1.3 Alarm- und Fehlercode

Wenn ein Alarm ausgelöst wird, wird das Alarmsymbol ^(*) in der Statusleiste angezeigt. Um die Details des ausgelösten Alarms zu sehen, gehen Sie wie folgt vor:

- 1. Drücken Sie die Taste **Enter** am S451, dann wird die Seite **Menü** auf dem Display angezeigt.
- Klicken Sie auf der Seite Menü auf Informationen > Alarminformationen. Der Fehlercode und die Beschreibung des Alarms werden auf dem Bildschirm angezeigt, wie in der Abbildung unten dargestellt.

Alle Alarmfehlercodes und ihre Bedeutungen sind wie folgt.

Beschreibung
EEPROM-Kommunikationsfehler
ADC-Kommunikationsfehler
Kommunikationsfehler der Optionskarte
Fehler in der drahtlosen Kommunikation
Kommunikationsfehler des Temperatursensors
Niedrige Gehäusetemperatur
Hohe Gehäusetemperatur
Niedrige Medientemperatur

00 00 08 00	Hohe Medientemperatur
00 01 00 00	PT20-Sensor defekt
00 02 00 00	PT1000-Sensor defekt
00 04 00 00	PT20-Sensor verkürzt
00 08 00 00	PT1000-Sensor verkürzt
01 00 00 00	Fehler in der Verbrauchsprüfsumme

10.2 Betrieb

Drücken Sie die Taste Enter, um die Menüauswahl zu öffnen.

Um Einstellungen oder Kalibrierungen vornehmen zu können, muss der Benutzer im Menü **Entsperren** eine 4-stellige Passwortnummer eingeben.

Wenn der Betrieb für mehr als 3 Minuten unterbrochen wurde, wird das Passwort zurückgesetzt und muss erneut eingegeben werden. Generell gilt: Wenn mehr als 3 Minuten lang keine Bedienung erfolgt, springt die Anzeige zurück zum Hauptbildschirm.

Hinweis: Die folgenden Einstellungen sind derzeit nicht auf dem Display, sondern nur in der mobilen App verfügbar:

- Alarmeinstellungen
- Messung: Referenzbedingungen, Verbrauchszähler, Durchflussrichtung
- Ausgangseinstellungen f
 ür Analog, Impuls, Modbus und Ethernet/APL
- Standardwerte für alle oben genannten Einstellungen

Für Details siehe Kapitel 11 Konfiguration mit der S4C-FS App.

10.3 Menüübersicht

11 Konfiguration mit der S4C-FS App

11.1 Konfigurierbare Parameter

Der S451 ermöglicht es Ihnen, die Parameter entsprechend den Anforderungen vor Ort zu konfigurieren. Die folgende Tabelle gibt einen Überblick über die werkseitigen Standardeinstellungen.

Area	Mögliche Einstellungen	Standard			
Messung	Rohrdurchmesser	54.0			
	Durchflusseinheit	Sm³/h			
	Verbrauchseinheit	Sm ³			
	Referenzbedingungen	$P_{s} = 1000 \text{ hPA}, T_{s} = 20^{\circ}\text{C}$			
	Gastyp Einstellung	Air			
	Verbrauchszähler	0 Sm ³			
	Durchflussrichtung	Standard			
Analog- ausgang 1	Messwertkanal	Flow			
	Skalierung		4 mA	20 mA	
		Unidirektio nal	Null Durchfluss	Max. Durchfluss	
		Bidirektion al	Max. Durchfluss rückwärts	Max. Durchfluss vorwärts	
		Variabel	Jeder Durchfluss	Jeder Durchfluss	
Analog- ausgang 2	Messwertkanal	Medium Druck 4 mA: 0.00 MPa 20 mA: 1.6 MPa or 5.0 MPa Oder Mittlere Temperatur 4 mA: -40°C 20 mA: +140°C			
	Skalierung				
Pulsausgang	Puls / Alarm	Puls			
	Puls pro Verbrauchseinheit	1			
Modbus	Device Adresse	1			
	Baudrate	19200			
	Framing/Parity/Stop bit	8, N, 1			
	Übertragungsart	RTU			

Modbus/TCP über Ethernet/APL und Modbus/TCP über Single Pair Ethernet	DHCP		aktiviert	
	MAC		Ab Werk einstellen	
	IP-Adresse		Statisch (wenn DHCP=deaktiviert) Dynamisch (wenn DHCP=aktiviert)	
	Subnetz-Maske Gateway			
	ТСР	Port	504	
		Auszeit	≥200 ms	

Um die Einstellungen des S451 zu konfigurieren, verwenden Sie die mobile App **S4C-FS** für die vollständigen Einstellungen oder das lokale Display für die gängigsten Einstellungen.

11.2 Alarmeinstellungen

Parameter	Beschreibung	Einstellungen	
Einstellung des Alarms	Zeigt an, ob der Alarm aktiviert oder deaktiviert ist.	: deaktivieren : aktivieren	
Kanal wählen	Wählen Sie einen Kanal für die Alarmeinstellung.	 Durchfluss(F) Tatsächliche Geschwindigkeit(F) Durchfluss(R) Tatsächliche Geschwindigkeit (R) Temperatur Druck 	
Alarm auswählen	Niedriger Alarm: zeigt einen Alarm mit einem niedrigeren Schwellenwert an. Hoher Alarm: zeigt einen Alarm mit einem höheren Schwellenwert an.	- Niedriger Alarm - Hoher Alarm	
Schwellen wert	Der Schwellenwert und die Hysterese werden verwendet, um einen Alarm zu aktivieren oder zu deaktivieren.		
	Bei Niedrigalarm wird der Niedrigalarm aktiviert, wenn der Kanalwert ≤ Schwellenwert ist. Wenn der Kanalwert >	Standard- Schwellenwert=0	
Hysterese	(Schwellenwert + Hysterese) ist, wird der niedrige Alarm deaktiviert.	Hysterese=0	
	Bei Hochalarm wird der Hochalarm aktiviert, wenn der Kanalwert ≥		

Schwellenwert ist. Wenn der Kanalwert < (Schwellenwert - Hysterese) ist, wird der hohe Alarm deaktiviert.

11.3 Verwenden Sie die Service-App S4C-FS

S4C-FS ist eine Android- oder iOSbasierte App, mit der Sie Online-Messungen ansehen und Einstellungen für SUTO-Durchflussmesser drahtlos ändern können.

Laden Sie S4C-FS im Google Play Store, im Apple Shop oder auf der SUTO-Website herunter und installieren Sie es wie jede andere App auf Ihrem Mobiltelefon.

Weitere Informationen über die Einführung der Sensoreinstellungen finden Sie in der S4C-FS Bedienungs- und Betriebsanleitung, die Sie von der SUTO-Website <u>www.suto-itec.com</u> herunterladen können (Download > Suche: S4C-FS).

ACHTUNG!

Unsachgemäße Änderungen an den Einstellungen können zu falschen Messergebnissen führen! Wenden Sie sich an den Hersteller, wenn Sie mit den Einstellungen nicht vertraut sind.

12 Kalibrierung

Das Gerät wird ab Werk kalibriert. Das genaue Kalibrierungsdatum ist auf dem Zertifikat angegeben, das zusammen mit dem Gerät geliefert wird. Die Genauigkeit des Geräts hängt von den Bedingungen vor Ort ab. Parameter wie Öl, hohe Luftfeuchtigkeit oder andere Verunreinigungen können die Kalibrierung und damit die Genauigkeit beeinflussen. Es wird jedoch empfohlen, das Gerät mindestens einmal pro Jahr zu kalibrieren. Die Kalibrierung ist von der Garantie des Gerätes ausgeschlossen. Wenden Sie sich dazu bitte an den Hersteller.

13 Wartung

Zur Reinigung des Geräts wird empfohlen, nur destilliertes Wasser oder Isopropylalkohol zu verwenden. Kann die Verschmutzung nicht entfernt werden, muss das Gerät vom Hersteller überprüft und gewartet werden.

14 Entsorgung

Elektronische Geräte sind recycelbar und gehören nicht in den normalen Hausmüll. Der Sensor, die Zubehörteile und dessen Verpackungsmaterial müssen zu Ihren lokalen, gesetzlich festgelegten Anforderungen entsorgt werden. Die Entsorgung kann auch über den Hersteller erfolgen, hierfür kontaktieren Sie bitte den Hersteller.

SUTO iTEC GmbH

Grißheimer Weg 21 D-79423 Heitersheim Germany

Tel: +49 (0) 7634 50488 00 Email: <u>sales@suto-itec.com</u> Website: <u>www.suto-itec.com</u>

All rights reserved $\ensuremath{\mathbb{C}}$

SUTO iTEC (ASIA) Co., Ltd.

Room 10, 6/F, Block B, Cambridge Plaza 188 San Wan Road, Sheung Shui, N.T. Hong Kong

Tel: +852 2328 9782 Email: <u>sales.asia@suto-itec.com</u> Website: <u>www.suto-itec.com</u>

Modifications and errors reserved S451_im_de_V2024-2